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to treat cubature over standard regions as a single entity. Two factors inhibiting the devel-opment of the theory were the large number of standard regions, each demanding specialattention, and the cost of experimentation.The triangle is simply one of these standard regions; the development of dedicatedcubature methods is comparatively recent. Our earliest reference is to Radon's seven-pointrule of polynomial degree 5 [Rad48]. A version of this rule is applicable to any planar region.The theory of integration over a triangle has lagged behind the theory for the square, butit has recently been spurred by two particular applications. One is the application toadaptive cubature, where triangles seem to be replacing squares as the basic module. Theother application is to the �nite element; here integrands with speci�ed singularities maybe involved.The century and a half of development of one-dimensional quadrature has left us with arich legacy in terms of variety of methods. We have rules involving derivative values, ruleswith all sorts of weighting functions, equally spaced rules, copy rules, minimum norm rules,equal weight rules, and rules of speci�ed trigonometric degree. There are methods for usingthe same sets of function values to evaluate sets of integral transforms. We have techniquesinvolving subtracting out singularities, and the method of steepest descent in the complexplane. And we have a wealth of expressions for the discretization error. For an overview ofall these, we suggest [DR84].Compared with all this, the available theory for the triangle is sparse indeed.References[Rad48], [DR84]1.2 Outline and NotationThroughout this paper, 
 denotes a speci�ed triangle, and I(
)[f ] denotes the integral ofan integrand function f(x; y) over this triangle. We refer toQ[f ] = �Xi=1wif(xi; yi) ; wi 2 IR ; (xi; yi) 2 IR2 (1:1)as a cubature rule, usually some sort of approximation to I(
)[f ]. This rule involves � =�(Q) weights and points. It is of polynomial degree d = d(Q) for 
 if Q[f ] = I(
)[f ]whenever f(x; y) is a polynomial of degree d or less. We do not discuss cubature rulesrequiring derivatives.In Section 2.1 we introduce the Du�y transformation. This reduces the problem to thatof cubature over a square. In Section 3.1 the same transformation is applied to advantagein situations where the integrand has certain singularities.Section 2.2 is devoted to cubature rules of the form (1.1). Special attention is paid todi�erent approaches to the construction of such rules and to the number of function values2



�(Q) required to obtain polynomial degree d(Q). Because this theory is an immediategeneralization of one-dimensional Gaussian quadrature, we refer to these rules genericallyas GQ. In Section 3.2, the few analogous results known to us involving weight functions aregiven.In Section 2.3 we outline the theory of cubature using extrapolation (EQ). It appearsthat the result of extrapolation is yet another cubature rule, obtained in a somewhat round-about way. This rule turns out to have nontrivial polynomial degree, but is marginally lesscost-e�ective in terms of polynomial degree than the GQ rules. In Section 3.3, extrapola-tion cubature is discussed in the context of integrand functions having certain algebraic orlogarithmic singularities on the edge or at the vertex. This approach to these cubatures hassigni�cant advantages in terms of generality and convenience over the corresponding GQ.In much of the theory, the results are independent of the actual triangle used for thecalculation. This is especially true of the polynomial degree of a formula. Any nonsingularlinear transformation takes one triangle into another and transforms a cubature formula inan obvious manner. It appears that the polynomial degree of the cubature formula is re-tained. (But this happens only occasionally when nontrivial weight functions are involved.)Di�erent authors have found it convenient to use several di�erent triangles, some of whichare listed below. Originally,@ = f(x; y) : x � 0 ; y � 0 ; x+ y � 1g; (1:2)which we refer to as the standard triangle, was used almost exclusively. Parts of the theorywill involve the unit square, = [0; 1]2; (1:3)and what we term the complementary triangle,@ = f(x; y) : x � 1 ; y � 1 ; x+ y � 1g: (1:4)Clearly, @ [ @ = . More recent work has been based on the equilateral triangle< = f(x; y) : x � 12 ; p3y � x � 1 ; �p3y � x � 1g; (1:5)which has vertices at (1=2;�p3=2) and (�1; 0). Finally, we have used the triangle� = f(x; y) : 0 � y � x � 1g (1:6)for the Du�y transformation below, simply because this makes the transformation simplerto follow. A consequence of the fact that di�erent authors prefer di�erent triangles is thatthe same cubature formula can appear in several forms in the literature.3



2 A Regular Integrand Function2.1 Transformation into a SquareA natural approach to integration over a triangle is to transform the triangle � into thesquare as follows:Z 10 �Z x0 f(x; y)dy�dx = Z 10 x Z 10 f(x; xt)dtdx:In the days before the formal theory for multidimensional integration, one supposed thata scientist would do this naturally, partly because, in the early days, numerical integrationover a square was more familiar. This transformation is now known as the Du�y transfor-mation [Duf82].To integrate over the square, the scientist might use the product of two one-dimensionalrules, for example, ntXi=1 Tig(ti) = Z 10 g(t)dt+ Eg ; where Eg = 0 8g 2 Pdt ;and nxXi=1Xjg(xj) = Z 10 xg(x)dx+ Eg ; where Eg = 0 8g 2 Pdx :Thus, he would calculate an approximation of the formQ[f ] = ntXi=1 nxXj=1TiXjf(xj ; tixj):A short calculation shows that this is of polynomial degree d = min(dt; dx). While, inprinciple, any pair of one-dimensional quadrature rules can be used, an erudite scientistmight choose the Gauss-Legendre rule and the appropriate Gauss-Jacobi rule. The weightsand abscissas for these Gaussian rules are often available for moderate to high values ofn (see, e.g., [SS66]). If the scientist also chose nt = nx, he would recover the well-knownStroud Conical Product rule [Str71], Q(d)CP , for which the number of points is�(d)CP = �(Q(d)CP ) = (d+ 1)24 for all odd d: (2:1)We note that this is a somewhat indirect way to obtain a rule for a triangle. The rule isnot symmetric, and there are three distinct Stroud Conical Product rules for each degreed, depending on which vertex is the preferred one.References[Duf82],[Str71],[SS66] 4



2.2 Polynomial Moment FittingNearly all the theory of numerical integration over a triangle is related in one way or anotherto polynomial approximation. In the cubature rule (1.1), the points (xi; yi) and weights wiare conventionally chosen so that the formula is exact for all polynomials up to a certaindegree d. If the polynomials p1; p2; : : : ; pM form a basis for the space P2d of all polynomialsin two variables of degree at most d, then a cubature formula of degree d is determined bya system of polynomial equations, known as the moment equations,Q[pi] = I(
)[pi] ; i = 1; 2; : : : ;M = dimP2d = 12(d2 + 3d+ 2): (2:2)Here the moments, I(
)[pi], are known, and the unknowns are xi; yi; wi; i = 1; 2; : : : ; �,which occur when the left-hand side is replaced by the expression in (1.1). Since a cubatureformula of a speci�ed polynomial degree for a speci�ed triangle 
 can be scaled onto anyother triangle with preservation of its degree, one may choose any convenient triangle 
 forthis calculation.One can distinguish between two approaches to construct cubature formulas:1. one may proceed directly to solve this system of nonlinear equations (most of thissection describes this); or2. one can search for polynomials that vanish at the points of the formula.This second approach has been very successful in (one-dimensional) quadrature. In cuba-ture, it has turned out to be di�cult for the square, and signi�cantly more di�cult for thetriangle. Radon constructed the �rst cubature formula for a triangle using the commonzeros of three orthogonal polynomials. Schmid [Sch83] used the theory of real polynomialideals to construct a minimal formula of degree 4 with positive weights. To our knowledge,only very few rules for the triangle have been obtained by using orthogonal polynomials orpolynomial ideals. However, this approach did lead to the following important result.Theorem 2.1 The number of points �(Q) in a cubature formula Q of degree d for a trianglesatis�es �(Q) � �L(d), where�L(d) = (d+2)(d+4)8 if d is even; (2.3)�L(d) = (d+1)(d+3)8 + jd+14 k if d is odd: (2.4)The �rst bound can be traced back to the same paper by Radon that contains the �rstcubature formula for a triangle. In its general form it was probably �rst published by Stroudin [Str60]. The second bound was obtained by M�oller for d < 12 [M�ol76] in 1976. Thisresult was generalized by Rasputin in 1983 [Ras83b]. The same bound had been establishedfor centrally symmetric regions, such as a square, in 1973 [M�ol73]. It is revealing thatit took ten years to modify the theory for a triangle with constant weight function andanother ten years for a triangle with a special weight function (see Section 3.2). It is also5



Table 1: Known minimal formulas, their properties, and original discoverersd �L(d) Quality Reference2 3 PI(3) [HS56]PI(3) [Hil77]3 4 NI [HS56]PI(2) [Hil77]4 6 PI [Cow73]PI [Sch83]5 7 PI [Rad48]6 10 PO [Ras83a]7 12 PI [Gat88, Bec87]8 15 PO [CH87]known that a formula of even degree that attains this lower bound has all weights positive[Mys68, Str71, CH88b]. This property is, however, not guaranteed for formulas of odddegree.In Table 1 we give an overview of the known minimal formulas. In the third column, Pindicates that no negative weights occur and I indicates that there are no abscissas strictlyoutside the triangle. N and O are the negations of P and I, respectively. The number ofdistinct formulas (if more than one) is indicated in parentheses.We now return to the direct approach, item 1 above. This has been fruitful, and anarsenal of cubature formulas now exists. At �rst, however, progress was painfully slow. Inretrospect, it turns out that progress has been governed by the willingness of researchersto appreciate the signi�cance of symmetry and structure and to realize that the detailedapplication of these is quite di�erent for the triangle than it is for the square.The term symmetry will be familiar to readers. By the symmetry group of a triangle,we mean the group of six linear transformations which take that speci�c triangle into itself.Any such group is isomorphic with the permutation group S3. For the equilateral triangle< , this symmetry group is termed the dihedral group D3. The term structure is less precise.In cubature it refers to conditions applied to the rule. These take the form of constraintson the solutions of the moment equations. For example, if we look ahead to (2.7), oncenumerical values for K0; K1, and K2 have been assigned, the rule has been structured. Onemay then try to solve the moment equations. It is common experience among those whoattempt to solve systems like (2.2) that exploiting the symmetry of the region and imposinga simple structure to the rule form has a simpli�ng e�ect on their task. This simpli�cationis a consequence of Sobolev's theorem [Sob62].Theorem 2.2 Let the integral I(
) and a cubature formula Q be invariant under the trans-formations of a group G. The cubature formula Q has polynomial degree d if Q[f ] = I(
)[f ]whenever f(x; y) is a polynomial of degree d or less that is invariant with respect to G.6



The larger the symmetry group G, the lower is the dimension of the space of all G-invariantpolynomials of degree at most d and, consequently, the lower is the number of nonlinearequations that determine a G-invariant cubature formula.It is convenient and appropriate to describe these formulas in a partly historic perspec-tive.1a. If no structure is imposed on the cubature formula, one can use the monomialsxiyj ; 0 � i+ j � d ;as a basis of P2d . The number of moment equations in this case is then 12(d2+3d+2).We have no evidence that any serious attempt was ever made to solve this set ofequations directly.1b. In the 1960s, signi�cant progress was made in cubature for the square by exploitingits symmetry. In particular, by imposing a rule structure symmetric under coordi-nate interchange, one could reduce the number of independent moment equations. Itappeared that for the standard triangle @ , a signi�cant reduction was available ifone structured the rule to be invariant under coordinate interchange, and �tted onlymonomials x�y� with � � � � 0. The number of independent moment equations isthen b14(d2+ 4d+ 4)c. Formulas of degrees 2, 3, 4, 5, and 6 with this symmetry existwith their number of points equal to the lower bound of Theorem 2.1.In retrospect, one can see that Sobolev's theorem is being applied, in this case with Gbeing a group of order 2, whose elements are the unit and a re
ection about one median.Later (see 1d below), it was applied using as G the full dihedral group D3. Later still (see 1cbelow), when the overall theory had become more familiar, the same theorem was appliedusing another subgroup of D3.1c. In the late 1980s, Gatermann [Gat88] and Cools and Haegemans [CH87] searchedfor minimal formulas for degrees larger than 5, using the subgroup of D3 generatedby the rotations. This approach led to minimal formulas of degree 7 and 8. It waslater established that no formula of degree 6 with 10 points exists with this symmetry[Gat90]. For this symmetry, a basis in polar coordinates using the equilateral triangle< is (r2)i(r3 cos 3�)j(r3 sin 3�)l ; 0 � 2i+ 3(j + l) � d ; l = 0 or 1;and the number of independent moment equations is b16(d2 + 3d+ 6)c.1d. The full symmetry of a triangle was systematically exploited for the �rst time in 1975by Lyness and Jespersen [LJ75], who introduced the equilateral triangle < for thispurpose. Since then, this choice has been popular. One of the advantages of < isthat it is straightforward to write down a basis for the D3-invariant polynomials ofdegree d and less. This is(r2)i(r3 cos 3�)j ; 0 � 2i+ 3j � d;7



and the number of independent moment equations isE(d) = � 112(d2 + 6d+ 12)� : (2:5)In the case of the triangle, then, the larger the symmetry group, the smaller the numberof independent moment equations E(d). We now describe in detail how this theory isapplied. We shall employ the equilateral triangle < , denote its area by A, and work inpolar coordinates. We shall apply the convention that (r; �) and (�r; � + �) refer to thesame point. Since Q[f ] is to have this symmetry, it follows that, if any point (r; �) appearsin Q[f ], so does any point of the form (r;��+ 2�j3 ), and all distinct points of this set carrythe same weight. Such a set of points is sometimes called an orbit. A moment's re
ectionwill convince the reader that no orbit has more than six elements; and a basic cubaturerule, one that contains only one orbit, can be expressed in the formQ(r; �)[f ] = A6 3Xj=1�f �r; �+ 2�j3 �+ f �r;��+ 2�j3 �� ; (2:6)where negative values of r are allowed, � 2 [0; �=6), and A is the area of the triangle.Moreover, any rule Q[f ] is expressible as a linear combination of these basic rules.Three geometrically distinct types of orbit occur. The �rst (type-0), with r = 0, involvesonly the centroid. There can be at most one of these in Q[f ]. The type-1 orbits have � = 0and positive or negative assignments of r. These have precisely three distinct points alllying on a median of the triangle. All other orbits are termed type-2 orbits and include sixdistinct points, none of which are on any median.Let Ki be the number of orbits of type i in a D3-invariant cubature formula. Thesenonnegative integers specify the structure of the rule and are known as structure parameters.A D3-invariant cubature formula must have the following form:Q[f ] = K0w0f(0; 0)+ K1Xi=1wiQ(ri; 0)[f ] + K1+K2Xi=K1+1wiQ(ri; �i)[f ]; (2:7)where Q(r; �)[f ] is de�ned in (2.6) above. The number of points required by this rule is�(Q) = K0 + 3K1 + 6K2: (2:8)The process of solving sets of nonlinear equations can be very involved. Some regard itas more of an art than a science. There is a set of inequalities, known as the consistencyconditions, that are heuristic but extraordinarily useful. They are based on the inaccuratepremise that one may obtain a solution to a set of E equations in N unknowns only ifE�N . This premise is applied to the set of E(d) independent moment equations and toany conveniently determined subset of these equations that does not involve some of theunknowns. Some consistency conditions for cubature formula (2.7) have been determinedin [LJ75]. These are K0 + 2K1 + 3K2 � E(d) ;8



2K1 + 3K2 � E(d)� 1 ; (2.9)3K2 � E(d� 6) ;K0 � 1;where E(d) is given by (2.5).A refreshingly well de�ned problem is that of �nding an optimal cubature formula whosestructure satis�es these consistency conditions. It is straightforward to show that, when Qgiven by (2.7) has polynomial degree d, then�(Q) � �CCL(d) = �16(d2 + 3d+ 2)� : (2:10)In principle, one could use an integer programming routine to determine the set ofnonnegative Ki that, for a given degree d, satis�es (2.9) and minimizes �(Q) given by (2.8).In practice, this particular set is so simple that it can almost be done by inspection. Thenone has to solve the set of nonlinear equations. If no solution can be found, one determinesthe next best solution of the minimization problem, and iterates. In the end, one is broughtto a stop when the system becomes too large for one's computing aids. This search wasinitiated by Lyness and Jespersen [LJ75], who went as far as d = 11; it was continued upto d = 20 by Dunavant [Dun85]. To our knowledge, apart from conical product rules, norules of higher degree have been determined explicitly.In the foregoing account we have implicitly assumed that the search has been for allreal solutions to the moment equations. As in the theory of one-dimensional quadrature,various additional criteria have been applied in the construction of cubature formulas. Forexample, a good formula (also known as a PI formula in [LJ75]) is one all of whose weightsare positive and all points inside the region of integration. Restricting the search to formulaswith all weights positive has largely been discontinued. Instead, all rules are found, and,when of interest, the value of a condition number�(Q) = �Xi=1 jwij= �Xi=1wi (2:11)is reported. Rules having some points outside the triangle are also reported. A di�erentcost criterion, the cytolic point count (conventionally termed �), is occasionally used. Itsjusti�cation is set in a context in which a large triangular region is subdivided into m2 smalltriangular regions of equal area, and the cubature rule is applied to each smaller triangle.This re
ects the average number of points per cell by discounting appropriately the cornerand edge point count. These variations have added little to the theory.On the other hand, Silvester [Sil70], by means of a somewhat elegant use of homogeneouscoordinates, introduced the theory necessary to construct analogues of the open and theclosed type of one-dimensional Newton-Cotes rules. The closed type uses all points on @of the form (j=m; k=m) except the three vertices when m is even, is of degree d = m, andhas D3 symmetry. Like the one-dimensional Newton-Cotes rules, the weights are rationals,and the value of �, ((2.11) above), increases inde�nitely with increasing m. For these the9



point count is �NCC(d) = 12(d+ 1)(d+ 2)� 32(1 + (�1)d): (2:12)Embedded formulas are pairs (or longer sequences) of cubature formulas where someor all of the points of a less precise formula are also used by a more precise formula. Incontrast with the one-dimensional situation, where the gap between the degree of a Gaussianquadrature formula and its Kronrod extension is large, in two dimensions one can constructembedded formulas of successive degrees.For constructing such embedded formulas, the approach using orthogonal polynomi-als has been more successful. Although published results are scarce, the highest-degreeembedded sequences available have been constructed by using this approach.Theorem 2.3 [CH90] Let a set of � distinct points support two distinct cubature formulasof respective degrees 2k � 1 and 2k + m;m 2 IN, in such a way that, for every point, thetwo assigned weights are di�erent from each other. Then � � (k + 1)2.The lower bound of Theorem 2.3 is known to be sharp for pairs of degrees (1,3) and (5,7).The con�rming rules appeared in references [GM78, CH88a]. Simpler, but less e�ective,embedded formulas are obtained naturally by extrapolation (which is treated in the followingsection).Nearly all the cubature formulas for the triangle that were known before 1971 are col-lected in Stroud's standard work on multiple integration [Str71]. A list of more recentreferences to available rules, together with information about the quality of these rules, hasbeen compiled by Cools and Rabinowitz [CR93].References[Bec87], [CH87], [CH88b], [CH88a], [CH90], [Cow73], [CR93], [Dun85], [Gat88], [Gat90],[GM78], [Hil77], [HS56], [LJ75], [M�ol73], [M�ol76], [Mys68], [Rad48], [Ras83a], [Ras83b],[Sch83], [Sil70], [Sob62], [Str60], [Str71]Additional reference material for this section[BE90], [dD79], [Eng70], [Eng80], [Fra71], [Gat92], [G�un75], [Hem73], [HMS56], [Lau55],[Lau82], [LG78], [Moa74], [Ras86], [SF73], [Str61], [Str64], [Str66], [Str69]2.3 ExtrapolationIn 1927, Richardson [Ric27] proposed his deferred approach to the limit. Possibly the �rstapplication of this in one-dimensional quadrature became known as Romberg integration[Rom55]. In the mid-1960s, extrapolation was applied by several authors to integration10



over a square. In the 1970s the techniques used to construct this theory were modi�ed toprovide corresponding results for the triangle. We describe �rst the theory for the squareand then the signi�cantly more di�cult theory for the triangle.We de�ne a one-point rule Q�;�[f ] = f(�; �): (2:13)The m2-copy version of this rule for integration over the square isQ(m)�;� ( )[f ] = 1m2 m�1Xj=0 m�1Xk=0 f �j + �m ; k + �m � : (2:14)Using (2.13), we may express a general cubature formula (1.1) asQ[f ] = �Xi=1 wiQ�i;�i [f ]: (2:15)Q is centrally symmetric for the square if it may be re-expressed in the formQ( )[f ] = �Xj=1 wj2 �Q�j ;�j [f ] + Q1��j;1��j [f ]� :The m2 copy of (2.15) is de�ned asQ(m)( )[f ] = �Xi=1wiQ(m)�i;�i( )[f ]: (2:16)This rule is an approximation to I( )[f ] obtained by subdividing the square intom2 identical squares, each of side 1=m, and applying a properly scaled version of Q[f ] toeach. If Q is centrally symmetric, then Q(m)( )[f ] is also centrally symmetric.For regular f(x; y), extrapolation is based on the two-dimensional version of the Euler-Maclaurin expansion. When f2Cp( ), p 2 IN, the almost self-evident extension of thestandard one-dimensional expansion may be expressed in the formQ(m)( )[f ]� I( )[f ] = p�1Xq=1 Bq( ;Q; f)mq +O(m�p): (2:17)The coe�cients in this expansion have the formBq( ;Q; f) = Xq1 + q2 = qqi � 0 cq1;q2(Q) Z f (q1;q2)(x; y)dxdy; (2:18)where cq1;q2(Q) is obtained by applying the rule Q toBq1(x)Bq2(y)q1!q2! ;11



Bq(t) being the Bernoulli polynomial of degree q in t. Integral representations for theremainder term of the expansion (2.17) have been given in [LM70].These coe�cients have several properties that are useful in constructing individual ex-trapolation procedures and in assessing them.1. If Q is centrally symmetric, thenBq( ;Q; f) = 0 8 odd q; (2:19)and so the Euler-Maclaurin expansion (2.17) is an even expansion.2. If Q is of polynomial degree d, thenBq( ;Q; f) = 0 ; q = 1; 2; : : : ; d: (2:20)3. If f(x; y) is a polynomial of degree d(f), then the asymptotic expansion (2.17) reducesto a �nite sum, and Bq( ;Q; f) = 0 8 q > d(f): (2:21)There are curiosities in the theory. For example, when f(x; y) is periodic with unit period,one �nds that all coe�cients Bq are zero, but Q(m)[f ]�I [f ] need not be zero. The vanishingof the remainder term is a stronger result than, and is not implied by, the vanishing of allindividual terms.Romberg integration over the square is conventionally based on the product trapezoidalrule Q(m)( )[f ] = 14 1X�=0 1X�=0Q(m)�;� ( )[f ]and occasionally on the mid-square rule Q(m)1=2;1=2( )[f ].The extrapolation process will be familiar to the reader. The numerical result, conven-tionally denoted by Tk;p, is a linear combination of p + 1 distinct approximations to I [f ],namely, Q(mi)[f ] with i = k; k + 1; : : : ; k + p. This combination is constructed so that the�rst p nonzero terms on the right of (2.17) disappear from the corresponding expansion ofTk;p � I [f ]. When f(x; y) is a polynomial of degree p, the result in item 3 assures us thatother terms also disappear. In fact, the remainder term vanishes too, leaving the result thatTk;p is exact, and so the implied rule is of polynomial degree p. More familiar is the caseof an even expansion when the extrapolation is designed to recognize only even terms, andthe result Tk;p is of polynomial degree 2p+ 1.We refer to these generalizations of Romberg integration collectively as extrapolationquadrature (EQ). The reader should note that there are many parameters to be set. Theseinclude the rule Q to be used, the mesh ratio sequence mi, and, of course, for an individualresult, the values of k and p.The theory given above for the square is extraordinarily simple to establish. Onlyintegral representations for the remainder term pose any serious di�culty at all. In con-trast, development of the corresponding theory for the standard triangle @ has not been12



straightforward. When one subdivides the standard triangle @ into m2 equal trianglesusing lines parallel to x = 0; y = 0 and x+ y = 0, one �nds m(m+ 1)=2 identical trianglesoriented in the same way as @ together with m(m� 1)=2 identical triangles oriented inthe same way as @ . If one proceeds on a cell-by-cell basis, it is clear how to assign pointsto the �rst set of triangles, but not the second set. In [Lyn78] this incongruity was resolvedby introducing a rule pair. The resulting theory is complicated.De�nition 2.1 A rule pair (Q( @ ); Q( @ )) comprises two cubature rule operatorsQ(1)( @ )[f ] = �Xi=1wif(�i; �i); andQ(1)( @ )[f ] = �Xi=1wif(�i; �i) (2.22)where P�i=1wi +P�i=1 wi = 1.These are two quite independent rules, pertaining to the two di�erent triangles. To constructthe m-copy, one requires both rules. Then we have the following de�nition.De�nition 2.2Q(m)( @ )[f ] = 1m2 �Xi=1wi m�1Xj=0 m�1�jXk=0 f ��i + jm ; �i + km �+ 1m2 �Xi=1wi m�2Xj=0 m�2�jXk=0 f  �i + jm ; �i + km ! : (2.23)Note that when m = 1, Q(m)( @ )[f ] may be zero, but in an extrapolation technique, thiszero value may be used as a meaningful result.When f2Cp( @ ), p 2 IN, the Euler-Maclaurin expansion for the triangle may bewritten in the formQ(m)( @ )[f ]� I [f ] = p�1Xq=1 Bq( @ ;Q; f)mq + O(m�p): (2:24)This was established in [Lyn78]. The coe�cients Bq( @ ;Q; f) have a more complicatedstructure than those for the square in (2.18). ClearlyBq( @ ;Q; f) = �Xi=1 wiBq( @ ;Q�i;�i; f) + �Xi=1 wiBq( @ ;Q�i;�i ; f):It may be shown thatBq( @ ;Q�;�; f) = Xq1 + q2 = qqi � 0 Bq1;q2( @ ;Q�;�; f);13



where, so long as �; � 2 (0; 1) and �+ � 6= 1,Bq1;q2( @ ;Q�;�; f) = Bq1(�)Bq2(f�+ �g)q1!q2! Z 10 @q1@xq1 f (0;q2�1)(x; 1� x)dx�Bq1(�)Bq2(�)q1!q2! Z 10 @q1@xq1 f (0;q2�1)(x; 0)dx:Here fxg means the fractional part of x. Moreover, when Q includes abscissas on the edgesand even outside its triangle, the expansion (2.24) remains valid, and the coe�cients maybe obtained from those given above by using analytic continuation.Clearly an associated rule for the square isQ( ) = Q( @ ) + Q( @ ):This rule Q( ) is centrally symmetric if � = � , wi = wi and �i + �i = �i + �i = 1.Results analogous to (2.19), (2.20), and (2.21) hold, namely,1. if Q( ) is centrally symmetric, then Bq( @ ;Q; f) = 0 8 odd q;2. if both Q(1)( @ ) and Q(1)( @ ) have polynomial degree d for their respective trian-gles, then Bq( @ ;Q; f) = 0, q = 1; 2; : : : ; d; and3. if f(x; y) is a polynomial of degree d(f), then the asymptotic expansion (2.24) reducesto a �nite sum, and Bq( @ ;Q; f) = 0 8 q > d(f) + 1: (2:25)These results were obtained earlier using an entirely di�erent approach [LP73] involvingproduct integration. This equally complicated theory was generalized in 1979 by de Doncker[dD79]. Let � be half an odd integer, f2Cp( @ ), p 2 IN andQ(�)[f ] = 1�2 �+1=2Xj=1 ��j+1=2Xk=1 f �j � 1=2� ; k � 1=2� � :Then Q(�)[f ] = I [f ] + Xq evenq < p Bq�q + O(m�p):In any extrapolation procedure based on this expansion, one is allowed to employ only valuesof � for which 2� is an odd integer. De Doncker has shown that when f is a polynomialof degree d(f), then Bq = 0 8 q > d(f). This means that an extrapolation procedure thateliminates Bq, q � d(f), leaves an exact result. This circumstance may be used to generaterules of speci�ed degree. Grundmann and M�oller [GM78], in an independent approach,established a set of rules of the formQt[f ] = tXj=1 at;jQ(j�1=2)[f ] (2:26)14



of degree 2t � 1. These rules are identical with rules obtained later by De Doncker us-ing extrapolation. (For larger t, the rule (2.26) has unduly high condition number; see(2.11) above. An alternative is to extrapolate using only a selection of the approximationsQ(j�1=2)[f ]. This reduces the conditioning error at a cost in extra function values.) So far aswe are aware, this approach to integration over the triangle has not been developed further,nor has the corresponding theory for squares.References[dD79], [GM78] [LM70], [LP73], [Lyn78] [Ric27] [Rom55]3 Speci�ed Singularities3.1 Transformation into a SquareThe Du�y transformation, introduced in Section 2.1, may be used to advantage in the casewhere the integrand function has a full corner singularity and a line singularity along theopposite edge. In particular, for the triangle � , when the integrand is of the formf(x; y) = y�(x� y)�(1� x)�r�(x; y)g(x; y);where r�(x; y) = (x2 + y2)�=2 and g(x; y) is regular in the triangle of integration, one �ndsreadily thatZ 10 �Z x0 f(x; y)dy�dx = Z 10 Z 10 x1+�+�+�(1� x)�(1� t)�r�(1; t)g(x; tx)dtdx: (3:1)Note that, while r�(x; xt) has a singularity at x = 0, this has been extracted, leaving theinnocuous function r�(1; t) which is regular for all t. This integral may be approximated bythe product of a pair of Gauss-Jacobi formulas, just as described in Section 2.1.This transformation is correct as written when r�(x; y) is replaced by any other functionhomogeneous of degree � in the triangle of integration, as de�ned in De�nition 3.1 below.3.2 Polynomial Moment FittingIn this section we discuss cubature rules with a nonconstant weight function for the triangle.This weight function w(x; y) is given, and its moments are known, usually in analytic form.The rule Q[f ] is of the same form as in preceding sections, but it is designed to approximatethe integral I(
;w(x; y))[f ] = Z
 Z w(x; y)f(x; y)dxdy: (3:2)As before, when this approximation is exact for all polynomials of degree d or less, the ruleQ[f ] is said to be of degree d. 15



The major di�erence between this theory and the special case with unit weight functionis that, in general, one cannot transform the triangle into another of di�erent shape andretain both the nature of the singularity and the polynomial degree. What happens isthat the a�ne transformation alters the weight function too. When w(x; y) = 1, this isno problem. But, in general, one �nds a rule of the original polynomial degree for a newtriangle and a new weight function.The shape of the triangle and the weight function are now important, and, for a �xedtype of weight function like 1=r, one needs a new rule for each di�erently shaped triangle.For reasons unknown to us, only one triangle has been treated, this having sides in theratio p5;p5; 2. One set of rules has a radial weight function 1=r, r being measured fromthe mid-point of the shorter side. The other is similar, except that r is now measured fromthe vertex opposite the shorter side. Only results for low degrees (1, 2, 3, 5, and 7) arepublished [CL78, Hae93, PFB81]. Most of them were constructed by solving the nonlinearequations that de�ne them and imposing symmetry with respect to one median (the onlysymmetry available). The highest-degree results were obtained using the common zeros ofthree orthogonal polynomials, a variant of the method used by Radon.The narrowness of the scope for possible application of these numerical results is mani-fest. If one has an equilateral triangle, or a right-angled triangle, these weights and abscissasare useless. They are of value for triangles of one speci�ed shape only. Unfortunately, theauthors do not make this clear. The casual reader could easily retain the impression thatthese results are of wider application.Lyness and Gatteschi [LG82] have treated a variant problem. They use a general triangleand an integrand function w(x; y)f(x; y) closely related to that in the preceding subsection.In terms of the triangle � , the weight function isw(x; y) = y�(x� y)�(1� x)�r�; (3:3)and the rest of the integrand function is of the form f(x; y) = h(r)g(x; y). The cubaturerule is of joint polynomial degree d if it is exact for all functions h(r)g(x; y), where g andh are polynomials of degree 
 and �, respectively, and 
 + � � d. The authors provide thespeci�cations for a product rule of the same type as in the preceding subsection. However,one of the product rule components is a one-dimensional quasi-degree quadrature rule.The only theoretical results known to us about formulas for triangles with weight func-tion are the following. First, the lower bound for the number of points presented in Theorem2.1 is valid for even degrees whenever the integral has a positive weight function. Recently,Berens and Schmid [BS92] proved that Theorem 2.1 is valid for the integralI [g] = Z 10 Z x0 y�(x� y)�(1� x)�g(x; y)dydx (3:4)for odd degrees also.References[BS92] [CL78], [Hae93], [LG82] [PFB81] 16



3.3 ExtrapolationA powerful method of handling integration over a triangle of an integrand having certainboundary singularities is by extrapolation. The results resemble closely corresponding re-sults for integration over a square, and much of this theory may be established as a minorcorollary to the theory for the square.The theory is based on homogeneous functions:De�nition 3.1 The function f(x; y) is homogeneous of degree 
 about the origin in a regionR if f(kx; ky) = k
f(x; y) for all k > 0 and (x; y) 2 R n ~0.This is in fact an n-dimensional de�nition. In one dimension the only homogeneous functionsof degree 
 are of the form kx
 . In higher dimensions more sophisticated functions maybe homogeneous. Two-dimensional examples include r
 = (x2 + y2)
=2, x
 , (x � 3y + r)
 ,and (x5 + 6y5)
=5 which are homogeneous of degree 
, while any function of y=x, suchas � = arctan(y=x), is of degree zero. The singularities that can be handled throughextrapolation are closely related to homogeneous functions.Two early and fundamental papers [LM80, Sid83] establish error functional expansionsfor singular integrals over triangles. The basic result in [LM80] is as follows.Theorem 3.1 Let f
(x; y) be homogeneous of degree 
 about the origin in the �rst quadrantx � 0 ; y � 0 and be Cp, p 2 IN, there except possibly at the origin. ThenQ(m)( @ )[f
 ]� I(4)[f
] =A2+
( @ ;Q; f
)m2+
 + C2+
( @ ;Q; f
)(lnm)m2+
 + p�1Xs=1 Bs( @ ;Q; f
)ms +O(m�p); (3:5)where C2+
 = 0 unless 
 2 IN.The identical expansion had been previously established for the square. The proof in thecase of the square is not easy. However, once established for the square, it can be establishedfor the triangle almost trivially. One notes that = @ [ @ . Then, sinceQ(m)( @ ) +Q(m)( @ ) = Q(m)( );any expansion for @ is simply the di�erence of the corresponding expansion for andfor @ . However, f
(x; y) is regular within @ , and so Q(m)( @ )[f
 ] has an expansionof the same type as (2.24). Taking this di�erence then simply alters the coe�cients in someof the existing terms and does not introduce any additional terms.Detailed expressions for the coe�cients in the case of the square are given in [Lyn76].The coe�cients in (3.5) have the following properties:1. if both Q(1)( @ ) has polynomial degree d for @ and Q has polynomial degree dfor , then Cs = Bs = 0 for all odd s; (3:6)17



2. if Q is of polynomial degree d, thenCs = Bs = 0 for s = 1; 2; : : : ; d: (3:7)The result as stated applies only to f
(x; y), which is homogeneous of degree 
. A naturalextension to F (x; y) = f
(x; y)g(x; y);where g is regular in , follows by expanding g(x; y) as a Taylor series about the origin andnoting that each term f
(x; y)g(r;s)(0; 0)xrys=r!s! is itself homogeneous of degree 
 + r+ s,and so the theorem applies also to this term in its own right. Taking care to handle theremainder term properly, we are led to an expansion of the formQ(m)( @ )[F ]� I(4)[F ] 'Xj=0 A2+
+jm2+
+j +Xj=0 C2+
+j lnmm2+
+j +Xs=1 Bsms :Sidi's result for F (x; y) = x
+1 ln x g(x; y) [Sid83] has the same form as this.A standard result from classical analysis allows di�erentiation of any asymptotic expan-sion with respect to an incidental parameter so long as the coe�cients are di�erentiable.The proof (not given here) of Theorem 3.1 above indicates that the coe�cients are analyticfunctions of 
 in any region not including integer 
.Setting �(x) = @@
 f
(x; y) = f
(x; y) lnf
(x; y), we �ndQ(m)( @ )[�]� I(4)[�]' @A2+
=@
m2+
 � A2+
 lnmm2+
 +Xs=1 @Bs=@
ms ; 
 62 ZZ; (3:8)where A2+
 and Bs are the coe�cients in (3.5). In the case that 
 2 ZZ, a serious calculationis required. This yields an expansion of the same form as one would have obtained if onehad ignored the fact that the coe�cients are discontinuous. This e�ect is to include in (3.8)an additional term in (lnm)2m�(2+
).Several generalizations of this result extend or alter the singularity structure of theintegrand in a way that is quite infeasible for Gaussian quadrature. For example, let�(x; y) = (f1(x; y) + f2(x; y) + f3(x; y))g(x; y);where f1 and f2 are homogeneous of degree 
1 and 
2 about the origin and f3 is homogeneousof degree 
3 about another vertex. Then the expansion for Q( @ )[�]� I(4)[�] is simplya concatenation of three expansions, each having the same form. The justi�cation forconcatenating the �rst two is obvious. We have to appeal to the Darboux theorem toestablish the theoretical basis for including the third; see [LM80].Another generalisation is established in [Lyn92]. One may apply the same expansion toany di�erently shaped triangle so long as it has the same singular behavior at the vertex.The point here is that an a�ne transformation, besides transforming the triangle, transformsthe singularity. In the case of GQ, this means that one must start anew to calculate a rule.However, a singularity of homogeneous degree 
 is transformed into another of the same18



degree; and if the technique depends only on this degree, then it is invariant under thetransformation. We consider this to be perhaps the most important attribute of EQ.Recently, in the case of the square, an expansion has been developed for the full cornersingularity [LdD93, VH93] F (x; y) = x�y�f
(x; y)g(x; y):It is beyond the scope of this article to pursue this further. The situation seems to be thatfor many algebraic or logarithmic singularities that occur at a vertex or along a side, anextrapolation expansion exists.References[LdD93], [LM80], [Lyn76], [Lyn92], [Sid83], [VH93]4 Concluding RemarksThe prevailing situation for regular integrands seems to be qualitatively di�erent from thatfor singular integrands.For regular integrands, so far as rules of speci�ed polynomial degree are concerned,recent progress has been less than spectacular. Fifty years ago, what are now called conicalproduct rules were available, allowing a result of polynomial degree d based on (d+ 1)2=4function values. Present theory reveals that the minimal formulas require more than halfthis number; these formulas are available only up to d = 8. The intermediate D3 formulas,using approximately (d + 1)2=6, are available up to d = 20. The general development ofextrapolation quadrature (a set of methods based on Richardson's deferred approach to thelimit) has been slow. The theory is complicated. Many variant and potentially interestingformulas exist; but so far as polynomial degree is concerned, the number of points requiredincreases at best like d3=48.For singular integrands, the situation is not the same. Gaussian rules of speci�ed poly-nomial degree are di�cult to construct, and very few are available in the literature. Com-pounding this scarcity is the circumstance that with the same weighting function, a di�erentrule is required for each di�erently shaped triangle. On the other hand, progress on extrap-olation quadrature for singular integrands has been signi�cant and a wide class of algebraicand logarithmic singularities is now within the reach of this theory. Moreover, for these,while possibly expensive, the integration can be carried out e�ectively in an iterative man-ner without the need for tables of weights and abscissas. The theory is to a signi�cantextent independent of the shape of the triangle.However, di�erent parts of the theory are connected and may be useful in a single ap-plication. For example, suppose one requires a Gaussian formula for an integrand functionhaving an extensive but known singularity structure of the type encountered in Section 3.3.To construct any Gaussian formula, one needs accurate numerical values of the moments.19



These might be determined by using extrapolation based on expansions of Section 3.3, usingfor Q one of the minimal formulas of Section 2.2. In this context, one might bear in mindthat the expansions of Section 3.3 require, in their proof, the expansions of Section 2.3. Thereader may �nd the description above somewhat arti�cial and self-serving. However, calcu-lations of this general nature are habitually used to construct special �nite elements. Thus,all four principal parts of the theory may be said to have contributed to this application ina cooperative manner.The ever-present problem of constructing minimal formulas remains, and we are con-vinced that the more courageous and idealistic of us will continue to �nd the time to facethis daunting set of successively harder challenges. We are particularly grati�ed that theseformulas have found a role, albeit minor, in the related area of extrapolation quadrature.The scope of this article has been limited to a review of the theory of integration over thetriangle. We refer the reader interested in the important application to adaptive quadra-ture over the triangle to [HK85] and to [Kea92]. In [Lyn83], he will �nd a somewhat datedbut detailed practical guide to handling applications. In [Sid79] a general framework ispresented for all sorts of extrapolation, linear and nonlinear. The cogent problems of con-vergence and stability in extrapolation are treated in [Sid90]. A useful list of referencesabout cubature over all standard regions has recently appeared in [CR93]. This provides awelcome update to the reference list contained in the standard works on this topic, namely,[Str71, Mys81]. Some very recent work in integration over curved surfaces and in the in-tegration of expressions containing derivatives is not treated here. Our hope is that thissynopsis of the theory, with its linked bibliography, will be helpful to individuals interestedin further research in this and related areas.References[CR93], [HK85] [Kea92], [Lyn83], [Mys81], [Sid79], [Sid90], [Str71]References[BE90] J. Berntsen and T.O. Espelid. Degree 13 symmetric quadrature rules for thetriangle. Reports in Informatics 44, Dept. of Informatics, University of Bergen,1990.[Bec87] T. Becker. Konstruktion von interpolatorischen Kubaturformeln mit Anwendun-gen in der Finit-Element-Methode. Ph.D. thesis, Technische Hochschule Darm-stadt, 1987.[BS92] H. Berens and H.J. Schmid. On the number of nodes of odd degree cubatureformulae for integrals with Jacobi weights on a simplex. In T.O. Espelid andA. Genz, editors, Numerical Integration { Recent Developments, Software andApplications, volume 357 of NATO ASI Series C: Math. and Phys. Sciences,pages 37{44, Dordrecht, 1992. Kluwer Academic Publishers.20
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